An Improvement on LSB Matching and LSB Matching Revisited Steganography Methods

نویسندگان

  • Kazem Qazanfari
  • Reza Safabakhsh
چکیده

The aim of the steganography methods is to communicate securely in a completely undetectable manner. LSB Matching and LSB Matching Revisited steganography methods are two general and esiest methods to achieve this aim. Being secured against first order steganalysis methods is the most important feature of these methods. On the other hand, these methods don't consider inter pixel dependency. Therefore, recently, several steganalysis methods are proposed that by using co-occurrence matrix detect stego images that are hidden by these steganography methods. Therefore, if incremental and decremental operations are done adaptively as causes to less distortion on co-occurrence matrix, these steganography methods will secure against steganalysis methods that use this matrix. In this paper we are going to improve these two steganography methods base on mentioned manner. On the other word, we hide the message in the cover image based on LSB Matching and LSB Matching Revisited method by using adaptive feature. Experimental results show that proposed improvement causes to reduce distortions in co-occurrence matrix and these methods being secure against some steganalysis methods that use this matrix to detect stego images

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Technique for Steganography Method Based on Improved Genetic Algorithm Optimization in Spatial Domain

This paper devotes itself to the study of secret message delivery using cover image and introduces a novel steganographic technique based on genetic algorithm to find a near-optimum structure for the pair-wise least-significant-bit (LSB) matching scheme. A survey of the related literatures shows that the LSB matching method developed by Mielikainen, employs a binary function to reduce the numbe...

متن کامل

Optimizing image steganography by combining the GA and ICA

In this study, a novel approach which uses combination of steganography and cryptography for hiding information into digital images as host media is proposed. In the process, secret data is first encrypted using the mono-alphabetic substitution cipher method and then the encrypted secret data is embedded inside an image using an algorithm which combines the random patterns based on Space Fillin...

متن کامل

Video Steganography Using LSB Matching Revisited Algorithm

Video Steganography deals with hiding secret data or information within a video. In this paper, a spatial domain technique for LSB Matching Revisited algorithm (LSBMR) has been proposed, where the secret information is embedded in the cover frames. LSB Matching Revisited(LSBMR) algorithm selects the embedding regions according to the size of secret message and the difference between two consecu...

متن کامل

Image Steganalysis Based on Co-Occurrences of Integer Wavelet Coefficients

We present a steganalysis scheme for LSB matching steganography based on feature vectors extracted from integer wavelet transform (IWT). In integer wavelet decomposition of an image, the coefficients will be integer, so we can calculate co-occurrence matrix of them without rounding the coefficients. Before calculation of co-occurrence matrices, we clip some of the most significant bitplanes of ...

متن کامل

نهان‌کاوی در تصاویر JPEG بر مبنای دسته‌بندی ویژگی‌های آماری و تصمیم‌گیری دو مرحله‌ای

Abstract In this paper, we propose a comprehensive steganalysis scheme for JPEG images. In this method, the optimized features which can interpret high distinction between cover and stego images are extracted from images. These features have been selected after a careful study on modifications caused by different steganography algorithms on statistical characteristics of images. Furthermore, us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.06727  شماره 

صفحات  -

تاریخ انتشار 2017